## **Photoperiod and Photoperiodis**

#### Photoperiod

- Word derivation:
  - Photo: light
  - *Period*: a specific length of time
- Definition: the relative length of daylight and night

#### Photoperiodism

- Definition: the response of plants to changes in the photoperiod
- Example: flowering
  - The timing of flowering in plants is determined by the relative length of daylight and night (photoperiod).
  - The seasons are controlled by the length of daylight.
    - Between December and June, in the northern hemisphere, the amount of daylight increases daily.
    - So, increased daylight indicates spring and summer are on the way.
    - Between June and December, the opposite occurs.

# The Maryland Mammoth and the Discovery of Short-Day Plants

- **Researchers**: Garner and Allard at the <u>USDA</u> in the 1920s
- Worked with the **Maryland Mammoth**, a large tobacco plant that didn't flower in the summer when most tobacco plants bloomed.
- They discovered that the shortening days of winter stimulated flowering in the Maryland Mammoth.
  - Under controlled experiments, in light-tight boxes where they could manipulate the amount of light and dark, they discovered that flowering only occurred if the day length (amount of light) was 14 hours or less.
- They called the Maryland Mammoth a short-day plant because it required a light period shorter than a critical length to flower.

#### **Short-day Plants**

- Short-day plants flower when daylight is less than a critical length.
- They flower in the late summer, fall, or early winter.
- Examples: chrysanthemums ("mums"), poinsettias, some soybeans.



Unknown sources

#### Long-day Plants

- Long-day plants flower when daylight is increasing.
- They flower in the spring and early summer.
- Examples: radishes, lettuces, irises, many cereal varieties.



Unknown sources

#### **Day-neutral Plants**

- Day-neutral plants do not flower in response to daylight changes.
- They flower when they reach a particular stage of maturity or because of some other cue like temperature or water, etc.
- This is the most common kind of flowering pattern.
- Examples: rice, dandelions, tomatoes, etc.



Unknown sources

## Surprise!

- In the 1920s, when they first did their research on the Maryland Mammoth, they thought it was all about critical day length.
  - For twenty years this was the prevailing understanding about how flowering was initiated.
  - All the biology books printed during these years talked about short-day plants and long-day plants.
- But, in the 1940s, researchers discovered it was **night length** rather than day length that determined flowering.

#### It's All About Night Length, *Not* Day Length!

- Key discovery: photoperiodism has nothing to do with day length—it is completely dependent on a critical night length.
- Summary of research using the cocklebur plant:
  - The critical night length for the cocklebur is 8 hours: as long as the cocklebur plant has at least 8 hours of continuous darkness, it will flower.
  - What was originally called a **short-day** plant is actually a **long-night** plant.
  - If the night is punctuated by light for a few minutes, then it will not flower!

#### The Experimental Results



Unknown source; part of figure 39.16, page 766, Campbell's *Biology, 5th Edition*; unknown source

#### Long-day Plants are Actually Short-night Plants!

- Similarly, what were once thought to be **long-day** plants are actually **short-night** plants: they flower only when the night is shorter than a critical length.
- A few minutes of light during the night will shorten the night length, therefore causing flowering to occur!



Part of figure 39.16, page 766, Campbell's Biology, 5th Edition

### Flower Growers Use Knowledge About Photoperiodism to Make Money!

- As your book mentions, the flower-growing industry uses this knowledge about how photoperiodism works to produce flowers out of season.
- Chrysanthemums are short-day (long-night) plants that normally bloom in the fall.
  - Their blooming can be stalled until Mother's Day in May by exposing the plants to a little light during the long evenings.
  - This effectively shortens the night below the critical night length!

## The Details

- Red light, of wavelength 660 nm, is the most effective in interrupting night length.
- Experimental results have confirmed this fact:
  - Short-day (long-night) plants experiencing a long night will *not* flower if exposed briefly to 660 nm light sometime during the night.

 Long-day (short-night) plants exposed briefly to a 660 nm light *will* flower even if the total night length exceeds the critical number of hours.



Short-day (long-night) plant

Long-day (short-night) plant

Part of figure 39.18, page 768, Campbell's Biology, 5th Edition

#### Far-red Light Cancels the Effect of Red Light

- Shortening of night length by **red light (R)** can be negated by a flash of **far-red light (FR)** of 730 nm.
- When this occurs, the plant perceives no interruption in night length.
- No matter how many times red light is flashed, as long as it is followed by far-red light the effects of red light are canceled.
- This works in both short-day and long-day plants.



Part of figure 39.18, page 768, Campbell's Biology, 5th Edition

#### **How Does This Work?**

- Light-sensitive proteins called **phytochromes** are partially responsible for the timing of flowering.
- The phytochrome proteins come in two different forms:  $\mathsf{P}_{\mathsf{r}}$  and  $\mathsf{P}_{\mathsf{fr}}.$
- These phytochromes act as photodetectors that tell the plant what kind of light is present.
- The absorption of light causes them to convert to the other form:
  - $\circ$  Pr absorbs **red light** to become Pfr.
  - P<sub>fr</sub> absorbs **far-red light** to become P<sub>r</sub>.
- The presence of P<sub>fr</sub> switches on physiological and developmental changes in plants.
  - Not only does it influence flowering, but also triggers other responses to light such as seed germination.



Unlabeled figure, page 768, Campbell's Biology, 5th Edition

## **Circadian Rhythms**

- Most plants and animals exhibit what are called circadian rhythms.
  - Word derivation:
    - *Circa*: approximately
    - Dies: day
    - "About a day"
  - Circadian rhythms are patterns of physiological change that follow a 24-hour cycle, day after day.
  - These 24-hour cycles can be seen in a variety of physiological responses and are very predictable:
    - Pulse
    - Blood pressure
    - Temperature
    - Rate of cell division
    - Metabolic rate
    - Stomata opening and closing
- The big question in biology is whether these changes are controlled externally (by environmental cues) or whether they are controlled internally (endogenously).
  - The answer seems to be that they are controlled internally.
  - Scientists have put people and plants in darkness for days, and they still exhibit the 24-hour cycle.
  - However, the 24-hour cycle is no longer synchronized with the outside world—it drifts.
- Take-home message: biological clocks exist, but they can drift.

## The Phytochrome System Is a Way to Maintain the Circadian Rhythm

- Since ordinary daylight has both red and far-red light, how does this system work?
  - The phytochrome is a **homodimer** (a quaternary protein with two identical halves), bonded to a nonprotein light absorbing pigment called a **chromophore**.
  - $_{\circ}$   $\,$  The  $P_{r}$  form is constantly being synthesized by the plant.
  - When exposed to daylight, some of the P<sub>r</sub> is converted to P<sub>fr</sub>, but some P<sub>fr</sub> is converted to P<sub>r</sub> as well.
    - Eventually, equilibrium is reached and maintained during the day.
  - Degradative enzymes destroy more of P<sub>fr</sub> than P<sub>r</sub>.
- In the dark, P<sub>fr</sub> is converted to P<sub>r</sub>.
  - $_{\odot}~$  At sundown, and throughout the night:  $P_{\rm fr}$  begins to disappear and  $P_{\rm r}$  accumulates.

- $_{\circ}~$  At sunrise:  $P_{fr}$  levels suddenly increase, and  $P_{r}$  levels decrease.
- Thus **night length** is responsible for resetting the circadian rhythm clock.



Campbell's Biology, 5th Edition